Raju, N. B.

Easy methods for fluorescent

staining of Neurospora nuclei.

This note is intended for Neurospora workers who have access to a fluorescence microscope but do not have easy access to advice on nuclear staining. The section on Equipment provides basic information for equipping and using a fluorescence microscope.

Fluorescent staining of fungal nuclei is quick, easy and much simpler than conventional methods (See e.g. Lenke et al. 1978 J. Cell Sci. <u>29</u>: 77; Williamson and Fennell 1975 Methods in Cell Biol. <u>12</u>: 335; Slater 1977

Methods in Cell. Biol. <u>20</u>: 135; Martegani and Trezzi 1979 Neurospora Newsl. <u>26</u>: 20). Several articles in "Flow Cytometry and Sorting" (eds. Melamed et al, John Wiley & Sons, New York, 1979) give useful information on the use of numerous nucleus-staining fluorochromes.

I have been exploring possible applications of fluorescence microscopy to routine Neurospora cytology. I have used five fluorochromes that have specificity for DNA: DAPI (diamidino phenylindole), Hoechst 33258, olivonycin, auramin-0 and acriflavin. DAPI, Hoechst 33258 and olivonycin are simplest and quickest to use. Acriflavin is very good for observations on ascus nuclear cytology. DAPI and Hoechst 33258 require a mercury light source and fluorite objectives. With auramin-0, the staining solution must be prepared fresh every time, and requires filtering. (See Lenke et al. 1975 Exptl. Cell Res. 96: 367.) Acriflavin and auramin-0 are very inexpensive and easily available. The other three are more expensive, but their cost is not prohibitive because of the very small quantities needed. Acriflavin- and auramin-0 staining procedures are based on Feulgen, and use of acriflavin for quantitative DNA measurements has been reported. Some fluorochromes (DAPI, oilvonycin, Hoechst 3342) are also useful as vital nuclear stains.

Based on my experience using an Olympus microscope fitted with epifluorescence accessories, the fluorescent methods are indeed very simple, yet highly reliable for staining Neurospora nuclei in conidia, mycelia and asci. Nuclear counts are reliable and painless. In addition, because of the specificity of several fluorochromes for DNA, they can serve a diagnostic function that is especially needed in fungi where Feulgen staining is difficult or unsuccessful.

A. DAPI and Hoechst 33258 (available from Calbiochem and Sigma, respectively) are specific to AT-rich regions. DAPI (and perhaps Hoechst 33258) also interacts with polyphosphate and S-adenosylmethionine, resulting sometimes in lower contrast between nucleus and cytoplasm Stock solution may be prepared at 1 mg/ml in distilled water and can be stored in the refrigerator for several months. 1) Place cells or mycelium in 3:1 ehtanol:

acetic acid for at least ten minutes. (Fixation in 1% glutaraldehyde, 4% formalin or 70% ethanol is also satisfactory.) Store in freezer if they are not to be used immediately. 2) Wash cells in water once. 3) Dilute the fluorochrome to 0.1 to 0.5  $\mu$ g/ml (final concentration) and suspend cells in it for ten minutes at room temperature. 4) Wash cells in water once or twice. 5) Suspend cells in 25% glycerol solution. 6) Place a drop of cell suspension on a clean glass slide, squash under a cover glass and seal as necessary. The slides keep well for a week or more if stored in a refrigerator.

B. Olivomycin (available from Calbiochem) is structurally related to mithramycin with specificity for G-C. Stock solution is prepared as 1 mg/ml 0.067 M Sorenson's phosphate buffer, pH 7.0, and stored in the refrigerator for a year or more. Place cells in ethanol: acetic acid (3:1) for at least ten minutes and store in the refrigerator if they are not to be used immediately. (Glutaraldehyde, ethanol or formalin may also be used for fixation.) Rinse cells in the phosphate buffer. Stain cells for five to ten minutes in 100  $\mu$ g olivomycin per ml buffer to which magnesium chloride is added (25 mM). Follow other steps as given for DAPI above. The slides may be stored in the refrigerator for several months without loss of fluorescence intensity. According to the literature, mithramycin (available from Signa) can be handled in a similar manner(Slater 1977 Methods in Cell Biol. <u>20</u>: 135).

C. Acriflavin (from Signa) and auramin-0 (from Kodak) staining protocols resemble the conventional Feulgen procedure (Cirssman et al. 1975 Methods in Cell Biol. 9: 179; Tanke and Van Ingen 1980 J. Histochem Cytochem 28: 1007; Lemke et al. 1975 Exptl. Cell Res. 96: 367). A simplified acriflavin method involves acid hydrolysis of unfixed cells in 4N HCl for 15 to 30 min at 30°C and staining in a solution containing acriflavin (100 200  $\mu$ g/ml) and K<sub>2</sub>S<sub>2</sub>O (5 mg/ml) in 0.1N HCl for 20 to 30 min at 30". (The shorter hydrolysis and staining times are for conidia and mycelia, whereas the longer times are for asci inside intact perithecia.) The stained cells are washed at least three times (5 min each) in HCl-70% ethanol mixture (2:98 v/v, at 30°C) and twice in distilled water to remove the noncovalently bound strain from cells. Cells are squashed under a coverglass in a drop of 25% glycerol.

## **Equi pnent**

For most observations, I recommend an epifluorescence microscope (also called reflected- or incident-light fluorescence microscope) employing a super-pressure mercury lamp. A mercury light source is very versatile because of its wide-range emission spectrum, including near-UV. The near-UV is essential when employing DAPI or Hoechst 33258. Olivonycin, acriflavin or auranin-0 do not require the near-UV emission, and can be used with either a mercury or a quartz-halogen light source. In addition to the light source, one or more sets of specifically matched excitation filter/dichroic mirror/barrier filter combinations are needed to deliver the radiation of desired wavelength to the specimen and to transmit the resulting fluorescence to the observer.

In an epifluorescence microscope, the light source is located at shoulder level. Radiation form the lamp travels a horizontal path through a 'narrow pass' excitation filter. A dichroic mirror placed at a 45" angle to the horizontal path reflects the radiation downwards so that it goes vertically through an objective to the specimen. The fluorochrome-DNA complex in the specimen absorbs this radiation and in turn, emits light of longer wavelength, which travels up through the same objective and through the dichroic mirror directly to the observer. (The dichroic mirror is opaque to shorter wavelengths but transparent to longer wavelengths.)

The transmission peak of the excitation filter should match as closely as possible the absorption maximum of the fluorochrome-DNA complex (365 nm with DAPI or Hoechst 33258, or about 425 nm for olivomycin). The dichroic mirror selected in each case should be opaque for excitation wavelength but transparent to the fluorescence emitted by the specimen (470 nm with DAPI or Hoechst 33258, and about 540 nm with olivomycin). Acriflavin or auramin-0 fluorescence may be examined with the same filter/mirror combination as for olivomycin. A barrier filter placed between the dichroic mirror and the eyepiece improves contrast by absorbing shorter wavelengths. It is chosen to have a cut-off point somewhere above that of the dichroic mirror but just below the emission maximum of the fluorochrome-DNA complex.

Since the epifluorescence method used the microscope objective as its own condenser, the objective must be capable of transmitting the desired wavelengths to the specimen. Fluorite objectives such as Zeiss Neofluors, Olympus UV-FL, Nikon UV-F, and Leitz FL, among others, are most useful for DAPI or Hoechst 33258. These objectives are also better than achromats for bright-field microscopy. The most expensive planapochromats (with their many lens elements) may not transmit the near-UV wavelengths necessary for DAPI or Hoechst 33258. Excitation of olivomycin, acriflavin and auramin-O, when complexed with DNA, is in the blue range requiring a separate filter/mirror combination as compared to DAPI. In this mode, normal bright-field as well as fluorite objectives can be used.

Most existing research microscopes can be adapted for work with various DNA-specific fluorochromes by fitting them with UV, violet, blue or green excitation accessories. Cost varies from \$3,000 to over \$10,000 for accessories alone, depending on microscope make. New Olympus or Nikon research microscopes equipped for epifluorescence work appear to be as good for out' purposes as are the much more expensive Leitz, Zeiss or Reichert units.

## **Observation**

I routinely observe cells at 400x or higher magnification. High magnification objectives have the advantage of producing a brighter image because of their larger numerical aperture. After staining with DAPI or Hoechst 33258, nuclei as well as DNA-containing cytoplasmic organelles fluoresce bluish whereas olivomycin-, acriflavin-, or auramin-O-stained nuclei fluoresce golden yellow against a generally dark background. Both auramin-O and acriflavin are very good for staining Neurospora for nuclear counts as well as for quantitative DNA measurements. I use acriflavin because of its brighter fluorescence and because the staining solution need not be prepared fresh every time. Fluorescent images fade as a result of intense excitation radiation; fading is more rapid when high magnification objectives are used. DAPI and Hoechst 33258 are relatively stable and allow observations for five to ten minutes on each microscope field. Olivonycin (or mithranycin) fluorescence fades dramatically within a few seconds, especially in the fresh preparations. Despite the initial rapid fading in these fresh specimens, residual fluorescence is adequate to allow reliable counting of nuclei and observation of major nuclear features. After storage for a week or more at  $4^{\circ}$ C, the olivonycin-stained specimens show remarkable resistance to fading and observations may be made for up to ten minutes on each microscope field. Acriflavinon fresh specimens.

Fluorescent fungal nuclei are especially difficult to record photographically because of their small genome size and the consequent problem of rapid fluorescence fading. Standard fine-grain films require unusually long exposures (4 min. or longer), and fast films are very grainy at the desired magnifications. I find the recently introduced Ilford XP1 (ASA 400) black and white film exceptionally good for photographing fluorescent Neurospora nuclei and chromosomes. This film combines the fine grain of slow films and the high speed of fast films. (Supported by U.S. Public Health Service Grant AI-01462.) - Department of Biological Sciences, Stanford University, Stanford, California 94305.