Leslie, J. F.*

Reciprocal translocation AR30 has a breakpoint

distal to all know IIL markers.

T(IIL; VL)AR30 is a reciprocal translocation first described by Perkins and Barry (1977 Adv. Genet. <u>19:</u> 113-285). Recently this rearrangement has been used in the synthesis of a complex chromosome rearrangement (Leslie, mnuscript in preparation), and additional mapping data for both breakpoints were obtained. The II breakpoint is distal to all known markers on IIL, while the V breakpoint is distal to <u>caf-1</u> on VL.

Three crosses were used to map the IIL breakpoint. Data from the cross T AR30 x Normal <u>pi pyr-4</u> (Table I, cross A) place the AR30 breakpoint outside and a considerable distance from the <u>pi pyr-4</u> region although the direction is not certain. The off-ratios in the first two classes can be attributed to decreased germination and/or growth of <u>pi</u> progeny.

TABLE 1

Crosses mapping AR30 breakpoint

							crossovers								
										I&	1&	II&	I, II		
						Parental s	Ι	II	III	II	III	III	&III		
•	Ν	I I pi	I pyr-4			23	29	3		2					
	AR30	+	+			84	7	2		5					
•	AR30	pyr-4	I ! +			28	6								
	AR30	+	arg-5	_		30	12								
С.	AR30	+	ure-3	II fl	III +	29	26	16	6	4	2	1	0		
	AR30	arg-5	+	-	- rip	36	12	8	8	2	1	5	0		
D.	N	caf-1	II at			17	5	4		0					
	AR30	+	+			19	5	2		0					

.A.	'l'he	number	Οİ	normal	(N) pro	ogeny	tor	each	CLASS	1S	gıven	ın	the	upper	line.	
	The	number	of	AR30	progeny	in t	he re	eciproca	l c	lasses	is	given	in	the	lower	line.
Β.	The	number	of	pyr-4	progeny	for	each	cIass	is	given	in	the	upper	lin	e.	
	The	number	of	pyr-4+	progen	y in	the	recip	rocal	class	s is	giver	ı in	the	lower	line.
C.	The	number	of	arg-5+	progeny	/ for	each	l class	s is	giver	ı in	the	upper	: lin	e.	
	The	number	of	arg-5	progeny	in	the	recipro	cal	class	is	given	in	the	lower	line.
D.	The	number	of	norma1	(N) p	rogeny	far	each	class	s is	given	in	the	upper	line.	
	The	number	of	AR30	progeny	in	the 1	reciproc	al d	classes	is	given	in	the	lower	line.
								-				-				

Data from crosses homozygous for AR30 are also shown in Table I. In homoygous translocation crosses, markers distal to the IIL breakpoint will segregate independently of markers proximal to the IIL breakooint. Markers on VL behave similarly.' Cross B in Table I (AR30 <u>pyr-4</u> x AR30 <u>arg-5</u>); indicates that <u>pyr-4</u> and <u>arg-5</u> remain linked so the AR30 breakpoint is not between <u>pyr-4</u> and <u>arg-5</u>. Similarly, cross C shows that <u>arg-5</u> is linked to <u>translocation</u> to the IIL breakpoint is linked to <u>rip</u>: P < 0.001 from Chi-square tests for independence, for all four intervals. Thus, the II breakpoint of AR30 is on IIL distal to the known genetic markers but not terminal.

Data from the cross T AR30 x Normal at <u>caf-1</u> Table I, cross D) show that the VL breakpoint is distal to caf-1. Perkins, Raju and Barry (1980 Chromosoma <u>76:</u> 255-275) have shown cytologically that the AR30 breakpoint is proximal to the nucleolus organizer. Thus, the VL breakpoint of AR30 is between <u>caf-1</u> and the nucleolus organizer.

A word of caution regarding this rearrangement is necessary. In heterozygous crosses (AR30 x normal sequence) many defective ascospores turn black. Instead of the 50% black spores expected from a reciprocal rearrangement crossed with normal sequence, about 85% of the shot spores from AR30 xNormal are black (the percentage of black spores increases with age). Consequently, the viability of the black spores from such a cross can be as low as 25 to 30%. In crosses homzygous for AR30 a normal situation prevails - 90 to 95% black spores are shot and 90 to 95% of the spores are viable. Thus, scoring AR30 visually by percent of shot black spores can be done only with practice, preferably by making comparisons of the tested stock when crossed with a known rearrangement tester and when crossed with a known normal-sequence tester. AR30 stocks containing fluffy are useful for such tests, and both T(IIL; VL)AR30 flA (FGSC #3948 and T IIL: VL AR30 fl a (FGSC #3949) have been deposited with FGSC. I have also deposited <u>T(IIL: VL)AR30</u> caf-1 at a (FGSC #3951) which should be useful in detecting extremely distal IIL markers by linkage to caf-1 and at. (Supported by Public Health Service Grant AI-01462.) - Department of Biological Sciences. Stanford University. Stanford. California 94305. *Present address; Research and Development Division; International Minerals & Chemical Corporation, Terre Haute, Indiana 47808.

TABLE 1

Rates of growth and fungicide resistance of osmotic mutants of Neurospora crassa

				Rate	of grown	:h ^a	Resistance to fungicides ^b					
Locus	Allele or isolation number	FGSC stock number	MM	СМ	MM + 2% NaCl	MM + 4% NaCl	procymidone	iprodione	vinclozolin	chloroneb	dicloran	quintozene
os-1	M16	812	50	19	0	5	+++	· · ·	+++	+++	++	++
	M155-1	824	61	23	5	0	+++	1. 1. +	+++	++	+	: +
	B135	951	49	7	0	0	+++	++	+++	+++	++	+++
	P668	973	50	44	0	0	+++	+++	***	+++	++	+++
	NM233(t)	1287	92	80	40	0	+++	+++	+++	++	++	+++
	P3282	1508	46	23	0	0	+++	+	+++	+++	` 7 ₽\$∷	+++
	NM204(t)	1637	80	60	9	0	+++	++	+++	++	++	++
	P3282	1644	49	11	0	0	+++	+	+++	+++	++	+++
	AR2	1675	63	21	0	0	+++	++	+++	++	++	+++
	P5990	2432	51	14	0	0	+++	++	+++	+++	++	***
	P6549	2584	64	23	0	0	+++	++	+++	+++	++	+++
		0000	100	100								
os-2	UCLASO	2238	106	109	62	8			**			
	UCLA93	2240	98	95	45	0	++	++			**	T
05-4	NM2010	2429	106	112	58	32	++	++	++	+	÷	+
									nt fait. Rung			1 38899.944 1 1 1 1 1 1
<u>os-5</u>	NM2160	1638	98	98	47	0	++	++	++	• • • • • • • • • • • • • • • • • • •	*	
<u>flm-1</u>	¥256M209	3624	.94	76	48	0	+++	++	+++	++	++	+++
			1									
<u>flm-2</u>	¥256M223	2668	98	93	90	60		++	++		**	+
cut	LLMI	2385	96	102	43	12	0	0	0	0	0	0
	mourico	21.20	50	co	00	17	0		0			n
<u>gia</u>	130120	3428	100	116	20	1/	0	0	0	l õ	l o	ň
	TAWIOO	3429	108	110	9Z						U.S.	

^aIncrease in colony diameter, mm/24 hr, at $26^{\circ}C$; mean of 3 replicates. CM = MM supplemented with 0.5% casamino acids and 0.5% yeast extract.

^bO = sensitive (ED₉₅ < 2µg fungicide/ml); + = low resistance (ED₉₅ >2<10µg/ml); +++ = high resistance (ED₅₀ >50µg/m1; ED₉₅ >100µg/ml); ++ = intermediate levels of resistance. ED values are the concentrations of fungicide in agar media that reduce radial growth by 50% or 95%.